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The slow dripping of a viscous fluid 
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(Received 21 April 1987) 

The problem considered is the determination of the mass of the drops which break 
away when a viscous liquid drips slowly out of a narrow vertical tube. A simple one- 
dimensional theory of the unsteady extension of a viscous thread under its own 
weight is given, which holds when viscosity, capillarity and gravity are important 
but inertia is negligible. A comparison with experiment is given. There are several 
systematic errors, the most important of which are associated with detailed 
behaviour a t  the pipe exit where die-swell and wetting are difficult to assess. With 
due allowance for these errors, agreement is fairly good. 

1. Introduction 
Suppose a liquid runs out of the open end of a narrow tube pointing vertically 

downwards (figure 1 ) .  Several flow regimes can be readily distinguished and some 
have been extensively studied. For example, if the flow rate is large enough a 
reasonably steady jet will form which accelerates and narrows under gravity, and 
will in many cases break up into droplets. This capillary instability of jets has been 
the subject of hundreds of papers and the recent survey by Bogy (1979) of one aspect 
of the problem may be cited as an example. 

On the other hand, if the flow rate is very small the fluid will form a slowly growing 
pendant droplet which can be regarded as being in static equilibrium at all times. 
When the volume reaches a critical value it becomes unstable, part of i t  breaks away, 
and the remainder quickly recovers to  form a smaller static droplet. The stability of 
drops has been the subject of a survey article by Michael (1981) and, of the works 
cited there, the paper by Padday & Pitt (1973) is of some relevance here. As well as 
analysing the stability of the drop Padday & Pitt discuss briefly the problem of 
determining the volume that breaks away once the stability limit is passed. There is 
experimental evidence that the volume breaking away depends on the flow rate even 
when the flow rate is very small, but there is fair agreement between the various 
theories and the various experiments, extrapolated to zero flow, and for the systems 
considered Rayleigh’s formula (Rayleigh 1899), 

Am = 3 . 8 3 ,  YR 
9 

is a reasonable estimate. (Here Am is the droplet mass, y is the surface tension, and 
R, is the tube radius). 

The present paper is an attempt to predict droplet sizes in a flow regime that is in 
a sense intermediate between the two described above. The fiuid is of large viscosity 
(the systems summarized by Padday & Pitt (1973) are of low-viscosity fluids) and the 
flow rate is too low to establish a jet. Instead, a drop forms and grows slowly into a 
short thread or column; this thread then stretches under its own weight and snaps 



562 8. D.  R. Wilson 

Time zero Time t 

FIGURE 1 .  Sketch indicating the coordinate system. 

off roughly half-way down. During this process, that is, up to the moment of rupture, 
the main balance of forces is between viscosity and gravity, with surface tension 
having an important but not dominant effect. Inertia is neglected throughout, 
though this involves a non-uniformity in the theory which is mentioned briefly 
below. After the thread ruptures, the upper part recoils fairly rapidly to form a new 
drop and the process repeats, so that a periodic dripping process will be seen. 

In  the theory to be presented a simple quasi-one-dimensional approach is used to 
consider the extension of an extruding viscous thread as i t  sags under its own weight. 
The approximations used will of course fail near the bottom end of the thread, and 
quite probably during the recoil process; but i t  turns out that  the quantity of 
interest, namely the breakaway volume, is not affected by this. A short programme 
of experiments was carried out to  test the theory. There are one major and two minor 
sources of error, that  is, points at which the model departs from reality; and when 
the estimated corrections are made the agreement is fairly good. 

2. Theory 
In  order to make the calculations as clear as possible and to explain the choice of 

dimensionless variables, we begin by neglecting surface tension and by analysing the 
motion from the instant when liquid first emerges from the tube up to the time when 
the first drop falls away. The estimate of the size of the first drop is of some interest 
in itself, and can be modified to include the effects of surface tension without much 
difficulty. We then turn to  the periodic dripping motion which is established after 
a time. 

A thread of liquid emerges from the tube and gradually extends downwards, 
stretching somewhat under its own weight. We assume that the velocity profile is 
uniform, that is, plug flow; the relaxation of the parabolic profile which was 
established in the tube is assumed to occur quickly and is outside the scope of the 
present one-dimensional theory. Nonetheless this transition region is important and 
will be discussed later. 

A Lagrangian coordinate system is employed in which fluid particles are labelled 
by the time, 7, at which they emerged from the tube. Thus if t is the present time, 
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we have 0 < 7 < t ,  with 7 = 0 on the bottom end of the thread and 7 = t on the fluid 
element that is emerging a t  the present instant (see figure 1).  

Let X ( 7 , t )  be the distance below the orifice of a typical particle P, labelled by 7, 

at  time t ,  and let A(7 , t )  be its cross-section area. We suppose that the volume flow 
rate, &, is constant. Then considering two neighbouring elements 7 and 7+d7, the 
equation of conservation of volume reads 

i.e. 
ax 
a7 

A - = - &  

Next we consider the force balance on the fluid between 7 and 7 + d7, denoting the 
longitudinal stress by S(T,  t ) .  (The sign convention here is that positive S corresponds 
to tension.) We find 

('A)r-('A)r+,r-pgA = 0. (3) 

Thus 

which can be integrated to  give 
SA = pgQ7 

(4) 

because S = 0 a t  7 = 0. Of course this equation has the simple interpretation that the 
longitudinal force a t  P equals the weight of all the fluid below. 

Finally we need a constitutive equation, and for a Newtonian liquid of viscosity 
p this is 

(6) 
1 aA 

A at 
s=-3p-- .  

(The factor 3p is the usual Trouton result for elongational flow ; see; for example, 
Petrie (1979).  The strain rate for a fluid cylinder of length L(t) is L/L which is the 
same as - A / A . )  

Equations ( 5 )  and (6) may now be combined to give 

with the solution A = Ao--(7t-72), PgQ 
3P 

where A ,  is the tube cross-section area and the initial condition 

A = A ,  a t 7 = t  (9) 

has been used. 
Thus the cross-section area of each element is reduced a t  a rate proportional to 7, 

and we want to discover which element shrinks to zero first (7,) and the time a t  which 
this occurs (t,). This is easily found from (8) and we have 

7, = (3pA,/pg&)tj (10) 

t ,  = 27,. (11) 
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It is interesting to note that exactly half the thread falls away as the first drop. What 
happens subsequently will be discussed later. It is possible to integrate (2) to obtain 
X ( 7 ,  t ) ,  and for the bottom of the thread 7 = 0 we have 

12p 1 t 
X ( 0 ,  t )  = __ ~ arctan ~ 

pg ( t I - t ” i  (tE-t2)$’ 

This formula shows that the bottom of the thread goes to infinity in a finite time 
t,, and so obviously the modcl must fail in some way before this. It can be shown that 
the singularity is removed when inertia is included in the equations, and that when 
this is done the cross-section area of the thread will tend to zero algebraically as 
t + co. However, in the parameter regime of interest inertial effects become impor- 
tant only a t  times very close to t,. The fact that the thread does break and thc drop 
falls away is no doubt due to some mechanism of instability and this topic is discussed 
by White & Ide (1975) ; but for our purposes i t  is sufficient to note that the present 
theory applies up to times close to t ,  since this is what determines the drop volume. 
however the rupture takes place. Some further remarks on this will be made later. 

We now show how the theory can be modified to include surface tension. The force 
balance equation ( 5 )  is replaced by 

( 1 3 )  XA -k 2zRy = pgQr, 

where R is the radius of the thread and y is the surface tension. As before, this 
equates the total longitudinal force a t  P to the weight of the fluid below, and it can 
be seen that the effect of surface tension in modifying the shape of the thread a t  the 
bottom end is zero. Only the volume matters, not the detailed shape. It will still be 
necessary, however, to ensure that the fluid element a t  which the thread snaps is well 
within the one-dimensional region. The stress equation (6) is replaced by 

and the extra term represents a compressional stress y / R .  These equations can be 
combined to give a new equation for A ,  and it is convenient a t  this stage to introduce 
dimensionless variables. The time-scale for t and 7 is (pA,/pg&)i and A is scaled on 
A,. Using an asterisk to denote the dimensionless variables there results 

with the initial condition 
A* = 1 when t* = 7*. 

Here S is the dimensionless parameter 

It is a simple matter to  integrate (15) subject to (16) and we thcn p u t  A* = 0 to 
obtain a relation between the value of 7* on any element and the time t* a t  which 
i t  shrinks to zero cross-section. This is 

1. :i iH 7*-33s T* 
t* = 7*-- 1 +-log- 
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FIGURE 2 .  Graph of the dimensionless drop volume 7: as a function of the surface-tension 
parameter S (cf. equation (19)). 

The element that reaches zero first satisfies an additional relation, namely d t* /d~* 
= 0. Thus the equation for 7: is 

7 y = -  -log(l-h)+-- 
A h  " l - h  l 1  ' 

where h = 3817,". (20) 

This implicit equation for 7: can be easily solved for r,* as a function of S by first 
choosing A, solving (19) for r,* and then solving (20) for S. The result is shown in 
figure 2 .  

The volume that breaks away is given essentially by 7: and the time by t,*, which 
can be calculated from (18). This equation can be simplified, using (19), to give 

Returning to dimensional variables, the formula for the breakaway mass Am 
which follows from (21) is 

A m = L + -  61.A VRO 
gtc g 

The theory gives a value oft,, of course, in terms of other system parameters, but 
(22) is probably more useful because t, is easier to measure than the flow rate &. 
When t, is large, ( 2 2 )  resembles Rayleigh's formula (1) with a numerical factor x 
instead of 3.8. Rayleigh's coefficient 3.8 was obtained from experiments with water 
and in fact varied somewhat as a function of the dimensionless group y/pgRi. In  his 
case the splitting of the pendant drop would be dominated by inertia, rather than 
viscosity, so that the present theory would not apply. 

Finally we consider the periodic dripping which is eventually established. Suppose 
we set t* = 0 a t  the instant when a drop breaks away. At this instant, then, the fluid 
element just emerging is labelled 7* = 0 and the fluid element a t  the bottom of the 
remaining thread is labelled T* = -7$, which is to be determined. This thread will 
recoil somewhat under the action of surface tension. However this does not matter 
and we only have to replace (13) by 

XA + 2 ~ R y  = pgQ(7 + 7 0 ) ,  (23) 
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since only the volume matters, not the shape. The analysis now proceeds almost 
exactly as above, with different letters, and there results, instead of (18), 

and instead of (19), 

with 

(7c*+70*)2  = 7 ylog(l-A’)+- 
A h  6[1  l - A ’  l l  ’ 

The volume breaking away is essentially 7; +7,* and in view of (25)  and (26) this 
is still given as a function of S by the curve shown in figure 2, regardless of the actual 
value of 7:. This is determined by a periodicity condition as follows. 

Let t: be the time at which the new drop breaks away, and recall that  it does so 
on the element 7:. The volume left behind is t: -7: ; this is the difference between the 
 values of the fluid element a t  the break point, 7:, and the fluid element just 
emerging from the tube, t:. This volume must equal 7:. Hence 

or 

Equation (27) can also, of course, be interpreted as stating that the volume 
extruded during the time interval between two drops must equal the drop volume. 
This, as noted, is already determined as a function of 6,  so 7; can be determined from 
(24), if desired. 

The quantity of practical interest is the drop size, which is essentially t:. A useful 
formula can be obtained by noting that the curve oft: against S is almost straight, 
up to S x 1 ,  so that 

t: x 2/3+2.298. (28) 

The dimensional form of this can be written 

and i t  is this formula that has been tested by experiment. 

3. Experiment 
The apparatus, which was constructed from Perspex, is sketched in figure 3. A 

vertical cylinder, about 25 ern x 2 ern diameter, is closed by a disk with a hole drilled 
through it, which in turn carries a removable exit pipe. The lower end of this was 
tapered by machining, so as to give a reasonably sharp rim to the orifice. In  the 
experiments reported here, the orifice diameter was 3.5 mm, and the exit pipe was 
about 5 cm long. 

The working fluid was Lyle’s Golden Syrup used as purchased. The viscosity was 
measured by the falling-ball method and found to be 62.5 Ns/m2 a t  20 “C. No method 
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FIGURE 3. Sketch of experimental arrangement. 

of measuring surface tension was available and the value 80 x lop3 kg s - ~  was taken 
from the literature (Sinat-Radchenko 1982). 

No attempt was made to control the flow rate directly; the fluid was poured into 
the cylinder to various levels and simply allowed to flow out under its own 
weight. 

Once a steady dripping was established a group of drops, usually 5, was timed with 
a stop watch, and collected and weighed. This procedure was carried out 3 or 4 times 
as quickly as possible, the idea being that these would represent measurements a t  a 
constant flow rate. Then the level of fluid in the cylinder was increased by 1-2 cm and 
another set of measurements made. 

The time intervals between the drops remained very nearly constant ; the times 
taken for each group of 5 drops (usually in the range 40 s to 2 min, i.e. 8-25 s per 
drop) varied by less than 1 % at each fixed flow rate. The mass collected was also very 
reproducible with variation from group to group a t  fixed flow rate being less than 
1 YO. Typical drop masses were 75-85 mg ; the balance used had a nominal accuracy 
of 0.1 mg. 

There was no way to control the temperature of the apparatus and the temperature 
in the laboratory rose by about 1 "C during the course of the experiments 
summarized in figure 4. Thus the later experiments, those at higher flow rates, were 
done a t  a somewhat lower viscosity and the data points are probably about 5 % too 
low. 

Comparing experiment with theory (figure 4) we see that the theoretical curve 
gives the right trend and the right order of magnitude but falls consistently below the 
experimental points by about 25 %, which suggests a reasonably important 
systematic error. In  fact several were tracked down. 

(if Although the nozzle appeared sharp to  the naked eye it was found on 
examination under a microscope to have a rather ragged rim whose thickness was 
estimated a t  0.13 mm. This is a limitation of Perspex. This rim would certainly be 
wetted and the effective radius would be increased by about 7 YO. It is also possible 
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FIGURE 4. Comparison of theory and experiment. 

that the fluid wetted a portion of the outer surface of the nozzle ; however this was 
not apparent on inspection with a hand lens. 

(ii) The flow rate increases slightly as the drop forms. This is because the fluid is 
pulled through the exit pipe by the drop as well as pushed through by the fluid above. 
This effect will be more important when the fluid level in the cylinder is low, when 
it can be estimated that the flow rate increased by about 10 %. The analysis can be 
modified to allow for variable flow rate. After lengthy calculations, which will not be 
given here, i t  turns out that  if the flow rate increases during drop formation, as it 
does, the theoretical estimate of drop size using the mean flow rate (equation (29)) is 
an underestimate. Assuming that the flow rate increases linearly (which is not quite 
correct) by a fraction during the formation of each drop, then the theoretical 
estimate should be revised upwards by a fraction 1/3p/4  or about 4% maximum in 
our case. 

(iii) More important probably than either of these is the swelling of the jet as i t  
emerges from the nozzle. Die-swell is well known in connection with the extrusion of 
elastic liquids but occurs also with Newtonian liquids, although this seems to be less 
well known. For creeping flow in the absence of gravity and surface tension a swell 
ratio of about 13% seems to be accepted and the experiments of Goren & Wronski 
(1966) and the finite-element calculations of Nickell, Tanner & Caswell (1974) may 
be cited. Gravity was present, of course, in the experimental work just cited and 
efforts have been made to include it in the numerical simulations. Calculations have 
been published by Dutta & Ryan (1982) for example, but objections have been raised 
(Vrentas, Vrentas & Shirazi 1985) to the form of downstream conditions uscd. All 
this work refers to steady jets of course and is not dircctly iq~plicable. But it seems 
likely that the emerging thread will expand by about 10% or so. The absence of a 
good estimate of the swell ratio is the major weakness in the present theory. 

Taking all these corrections into account, it seems that the theoretical curve 
should be revised upwards by about 15-20% and the agreement can then be 
regarded as satisfactory. A formula which is reasonably accurate numerically can 
thus be obtained by using (29) with a nominal radius 20% greater than the true 
radius. 
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4. Concluding remarks 
The agreement between theory and experiment suggests that the model has the 

correct mechanism of drop elongation and rupture, and that the major source of the 
discrepancy is the failure of the one-dimensional t,heory near the nozzle exit. It is 
difficult to see how this theoretical deficiency can be remedied. 

An attempt was made to test (22) experimentally but then the measured values of 
t, showed considerable scatter and the general agreement between theory and 
experiment was slightly worse than for the periodic dripping process. There was no 
reliable way to start the flow o f f  (I simply put a finger over the hole and then removed 
it). The drop grows very slowly a t  first and much of the time up to t = t, is spent in 
a flow regime in which the one-dimensional theory must fail. I n  typical experiments 
the drop was still only about one tube radius long a t  t = at,. Some allowance could 
be made for this, but added to all other corrections this would give a combined 
correction factor of the same order as the basic theoretical result, and this does not 
seem worthwhile. 

In  the course of setting up the experiment some other observations were made 
which may be of interest. An attempt was made to use a silicone fluid (PDMS) of 
similar viscosity but which had a much lower value of the surface tension (about 
21 x kg s+). Although drops formed they were reluctant to separate completely 
and instead pulled out a long fine fluid thread behind them, which would often persist 
until the next drop fell. The thread could be ruptured by allowing the drop to fall a 
long way, but then the fluid thread tended to blow about causing errors in the drop 
weight measurements. This suggests that  surface tension may play a role in thread 
rupture other than what is allowed for in the present theory. Note also that the 
extension rate of the thread is limited by the inertia of the falling drop, which cannot 
attain an acceleration greater than g. The strain rate and therefore the stress will in 
fact rise to a maximum and then fall to zero algebraically as t --f co, rather than tend 
to infinity a t  a finite time. One might conjecture then, that the threads generally 
break because of some instability driven by surface tension, which in the case of 
PDMS does not have time to operate before the strain rate begins to decrease. 

The instability and break-up of extending fluid threads is of great interest in 
connection with the spinning of polymer melts and solutions (White & Ide 1975; 
Bousfield et al. 1986). The conclusion seems to be that elasticity may have a long- 
term stabilizing effect. It was initially hoped that the present experiment might 
provide some information on this topic, offering as it does a whole family of constant- 
force stretching experiments for each drop ; and it is intended to attempt to measure 
the thread length X ( 7 0 ,  t ) .  However the uncertainty about conditions a t  the pipe exit 
causes serious theoretical difficulties. 

When the flow rate is large enough a steady jet will form but the process seems to 
depend somewhat on how the flow is increased. For a large orifice (about 4.4 mm 
diameter) the silicone fluid formed a thin jet even a t  very low flow rates and could 
hardly be induced to form drops at  all. For fluids of lower viscosity (1-10 Ns/m2) the 
fluid often dripped a t  first but developed into a steady jet later. Each drop formed 
before its predecesor had fallen away completely and the interval between successive 
drops gradually got less. (Usually this resulted in a steady jet, as noted, but 
occasionally a periodic blobbing motion could be set up in which the fluid formed a 
continuous thread). This behaviour might be the result of each drop increasing the 
flow rate (by the mechanism discussed earlier) and thereby increasing the size of its 
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successor, until there is no longer time for them to separate before they hit the 
bottom of the collecting vessel. 

Much preliminary experimentation was carried out while the author was visiting 
the Department of Aerospace Engineering and Mechanics, University of Minnesota, 
a t  the invitation of Professor D. D. Joseph. It is a pleasure to thank Professor Joseph 
for his hospitality and support. The final experiments were done in the Rheology 
Laboratory of the Mathematics Department, UMIST, and the author would like to 
express his thanks to Dr A. Kaye for this use of this facility. 
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